"The PEC model"

ERMS Workshop, Bryne, 3 – 5 May 2006

presented by

Henrik Rye SINTEF

Model structure:

Near field plume, dissolved chemicals and settling of particles:

Risk areas/volumes are calculated for:

Water volume where PEC/PNEC > 1 for
 Chemical stress (toxicity)
 Particle stress in the water column (barite)

Sediment <u>surface area</u> where PEC/PNEC > 1 for
 Chemical stress (toxicity)
 Burial
 Change in grain size
 Oxygen depletion

Impact on water column:

Discharge compound: Impact: Chemicals with Pow < 1000 **Chemical stress** Chemicals with Pow > 1000 Heavy metals in barite Particle stress Particles in mud Cuttings Water column Sediment

Impact on sediment:

Dissolved compounds in the water column:

 Equation 2. Calculation of local PEC seawater for the marine environment (ERMS approach)

PEC seawater = C_{discharge} * exp (- kt) /DILUTION

- PEC_{seawater} = local concentration in seawater during emission episode [mg*l⁻¹]
- $C_{discharge} = concentration of the substance in the discharge [mg*l-1]$
- k = biodegradation factor (days⁻¹)
- t = time (days)
- DILUTION = dilution factor [-]

Dissolved metals from barite in the water column:

Equation 4. Calculation of local PEC seawater for dissolved metals from barite in the marine environment (ERMS approach)

PEC seawater = (C_{discharge} /DILUTION) * (FRACTION /Kp_{metal})

PEC _{seawater} = local concentration in seawater of dissolved metal [mg*l⁻¹]
 C _{discharge} = concentration of barite particles in the discharge [mg*l⁻¹]
 DILUTION = dilution factor for dilution of the discharge in recipient water (-)
 FRACTION = fraction of the metal in barite (kg metal/kg barite)
 Kp_{metal} = partition coefficient between the metal in barite and dissolved metal

Partition coefficient for metals in the water column:

Equation 5. Calculation of Kp metal (TGD approach)

K $p_{metal} = C_{sol}/C_{aqu}$

Csol = Total available concentration in the solid phase [mg*kg-1] Caqu = Available concentration in the aqueous phase [mg*kg-1]

PEC for sediment (ERMS approach):

Equation 9. Calculation of local PEC_{sediment} for the marine environment (ERMS approach)

PEC sediment = [1000 / RHO susp] * PEC discharge /DEPOSITION

- PEC _{discharge} = concentration in discharge pipe [mg*l-1]
- DEPOSITION = deposition factor calculated by the model (-)
- RHO susp = bulk density of suspended matter in sediment [kg*m-3]
- PEC sediment = predicted environmental concentration in sediment [mg*kg-1]

PEC for organic chemicals in sediment:

Equation 10. Calculation of local PEC_{sediment} for organic chemicals in sediment (ERMS approach):

PEC sediment = PEC (t =0)sediment * exp (- kt) /BIOTURB

- PEC sediment = concentration of chemical in the sediment [mg*kg⁻¹]
- PEC $(t=0)_{sediment}$ = same as above for the initial time step t = 0.
- k = biodegradation factor for chemical in the sediment [days⁻¹]
- t = time [days]
- BIOTURB = dilution factor in the sediment due to effects from bioturbation [-]

Partition of organic chemicals in sediment:

Equation 11. Calculation of local pore water concentration PEC_{porewater} for organic chemicals (TGD approach):

PEC porewater = [RHO susp /1000] * PEC sediment * Kpsusp-water

PEC porewater = concentration of chemical in the pore water [mg*l⁻¹]
 PEC sediment = concentration of chemical in the sediment [mg*kg⁻¹]
 RHO susp-water = bulk density of suspended matter [kg/m⁻³]
 Kp susp water = suspended matter-water partitioning coefficient [m³*m⁻³]

Partition coefficient for organic matter in sediment:

Equation 12. Calculation of Kp _{susp-water} of non-ionic organic substances in sediment (TGD approach)

K $\mathbf{P}_{susp-water} = \mathbf{F}_{oc} * \mathbf{K}_{oc}$

 K_{oc} = partition coefficient organic carbon-water [l*kg-1] F_{oc} = weight fraction of organic carbon in compartment [kg*kg-1]

Barite heavy metals conc. in sediment:

Equation 13. Calculation of local PEC_{metal} for barite metals in sediment (ERMS approach):

PEC metal = PEC (t =0)sediment * FRACTION /BIOTURB

PEC $_{metal}$ = concentration of barite metal in the sediment [mg*kg⁻¹]

- PEC (t =0)_{sediment} = concentration of deposited barite in the sediment at t = 0 [mg*kg⁻¹]
- FRACTION = content of the metal in barite [kg metal * kg⁻¹ barite]
- BIOTURB = dilution factor in the sediment due to effects from bioturbation [-]

Pore water dissolved heavy metal concentration in sediment:

Equation 14. Calculation of local pore water concentration PEC_{porewater} for barite metals (ERMS approach):

PEC porewater = [RHO susp /1000] * PEC metal * Kp metal-water

PEC porewater = concentration of dissolved metal in the pore water [mg*l⁻¹]
PEC metal = concentration of metal in the sediment [mg*kg⁻¹]
RHO susp = bulk density of suspended matter [kg/m⁻³]
Kp metal-water = barite metal-water partitioning coefficient [m³*m⁻³]

